Capítulo 9

9.3 A soma associada dá, usando a fórmula sugerida,

área(Rn)=e0n+e1/nn+e2/nn++e(n1)/nn=e1e1/n11/n.\text{\'{a}rea}(R_{n})=\frac{e^{0}}{n}+\frac{e^{1/n}}{n}+\frac{e^{2/n}}{n}+% \dots+\frac{e^{(n-1)/n}}{n}=\frac{e-1}{\frac{e^{1/n}-1}{1/n}}\,.

Mas limne1/n11/n=limt0+et1t=1\lim_{n\to\infty}\frac{e^{1/n}-1}{1/n}=\lim_{t\to 0^{+}}\frac{e^{t}-1}{t}=1. Logo, área(R)=e1\text{\'{a}rea}(R)=e-1. 9.5 (1) I(x)=0I(x)=0 se x12x\leq\frac{1}{2}, I(x)=(x12)I(x)=(x-\frac{1}{2}) se x>12x>\frac{1}{2} (2) I(x)=x22+xI(x)=-\frac{x^{2}}{2}+x (3) I(x)=x2xI(x)=x^{2}-x. 9.6 (1) 2x+C-2x+C (2) x22+C\frac{x^{2}}{2}+C (3) x33+C\frac{x^{3}}{3}+C (4) xn+1n+1+C\frac{x^{n+1}}{n+1}+C (5) 23(1+x)3/2+C\tfrac{2}{3}(1+x)^{3/2}+C (6) senx+C\operatorname{sen}x+C (7) cosx+C-\cos x+C (8) 12sen(2x)+C\frac{1}{2}\operatorname{sen}(2x)+C (9) ex+Ce^{x}+C (10) x+ex+Cx+e^{-x}+C (11) 12e2x+C\tfrac{1}{2}e^{2x}+C (12) 32ex2+C-\tfrac{3}{2}e^{-x^{2}}+C (13) 2x+C2\sqrt{x}+C (14) lnx+C\ln x+C (15) arctanx+C\arctan x+C (16) Com 1<x<1-1<x<1, arcsenx+C\operatorname{arcsen}x+C 9.8 Como x22x\tfrac{x^{2}}{2}-x é primitiva de f(x)=x1f(x)=x-1, temos 02(x1)𝑑x=(x22x)|02=0\int_{0}^{2}(x-1)\,dx=(\tfrac{x^{2}}{2}-x)|_{0}^{2}=0. Esse resultado pode ser interpretando decompondo a integral em duas partes: 02f(x)𝑑x=01f(x)𝑑x+12f(x)𝑑x\int_{0}^{2}f(x)\,dx=\int_{0}^{1}f(x)\,dx+\int_{1}^{2}f(x)\,dx. Esboçando o gráfico de f(x)f(x) entre 0 e 22,

Vemos que a primeira parte 01f(x)𝑑x=12\int_{0}^{1}f(x)\,dx=-\tfrac{1}{2} é a contribuição do intervalo em que ff é negativa, e é exatamente compensada pela contribuição da parte positiva 12f(x)𝑑x=+12\int_{1}^{2}f(x)\,dx=+\tfrac{1}{2}. 9.9 Não, a conta não está certa. É porqué a função 1x2\frac{1}{x^{2}} não é contínua (nem definida) em 0, ora 0 pertence ao intervalo de integração. Logo, o Teorema Fundamental não se aplica. No entanto, será possível dar um sentido a 121x2𝑑x\int_{-1}^{2}\frac{1}{x^{2}}\,dx, usando integrais impróprias. 9.10 (1) 55, (2) 163\frac{16}{3}, (3) 13\frac{1}{3}, (4) 11. (5) 1256\tfrac{125}{6}. 9.11

Observe que expressando a área com uma integral com respeito a xx,

A=0e1(2(1))𝑑x+e1e2(2lnx)𝑑x.A=\int_{0}^{e^{-1}}(2-(-1))dx+\int_{e^{-1}}^{e^{2}}(2-\ln x)dx\,.

Essa integral requer a primitiva de lnx\ln x, o que não sabemos (ainda) fazer. 9.12 Consideremos fαf_{\alpha} para diferentes valores de α\alpha:

A área debaixo do gráfico de fαf_{\alpha} é dada pela integral

Iα=ααfα(x)𝑑x=eαα2αα(α2x2)𝑑x=()=43αeα.I_{\alpha}=\int_{-\alpha}^{\alpha}f_{\alpha}(x)\,dx=\frac{e^{-\alpha}}{\alpha^% {2}}\int_{-\alpha}^{\alpha}(\alpha^{2}-x^{2})\,dx=(\cdots)=\tfrac{4}{3}\alpha e% ^{-\alpha}\,.

Um simples estudo de αIα\alpha\mapsto I_{\alpha} mostra que o seu máximo é atingido em α=1\alpha=1. 9.13 Como In=nn+1an+1nI_{n}=\frac{n}{n+1}a^{\frac{n+1}{n}}, temos limnIn=a\lim_{n\to\infty}I_{n}=a. Quando nn\to\infty, o gráfico de xx1/nx\mapsto x^{1/n} em +\mathbb{R}_{+} tende ao gráfico da função constante f(x)1f(x)\equiv 1. Ora, 0af(x)𝑑x=a\int_{0}^{a}f(x)\,dx=a! 9.14 (1) x44x33+x22+x+C-\frac{x^{4}}{4}-\frac{x^{3}}{3}+\frac{x^{2}}{2}+x+C, (2) 12x2sen(2x)2+C\frac{-1}{2x^{2}}-\frac{\operatorname{sen}(2x)}{2}+C, (3) 17x75x+C-\frac{1}{7x^{7}}-\frac{5}{x}+C, (4) 2tanx+C2\tan x+C. 9.15 (1) 18(x+1)8+C\frac{1}{8}(x+1)^{8}+C (Obs: aqui, basta fazer a substituição u=x+1u=x+1. Pode também fazer sem, mas implica desenvolver um polinômio de grau 77!) (2) 12(2x+1)+C\frac{-1}{2(2x+1)}+C (3) 18(14x)2+C\frac{1}{8(1-4x)^{2}}+C (4) 12cos(x2)+C-\frac{1}{2}\cos(x^{2})+C, (5) 12sen2(x)+C\frac{1}{2}\operatorname{sen}^{2}(x)+C, ou 12cos2(x)+C-\frac{1}{2}\cos^{2}(x)+C (6) 2sen(x)+C2\operatorname{sen}(\sqrt{x})+C, (7) x2+14sen(2x)+C\frac{x}{2}+\tfrac{1}{4}\operatorname{sen}(2x)+C, (8) 12ln(1+x2)+C\tfrac{1}{2}\ln(1+x^{2})+C, (9) 23(1+senx)32+C\frac{2}{3}(1+\operatorname{sen}x)^{\frac{3}{2}}+C (10) tanxdx=senxcosx𝑑x=(cosx)cosx𝑑xln|cosx|+C\int\tan x\,dx=\int\frac{\operatorname{sen}x}{\cos x}\,dx=-\int\frac{(\cos x)^% {\prime}}{\cos x}\,dx-\ln|\cos x|+C. (11) 32ln(1+x2)+5arctanx+C\tfrac{3}{2}\ln(1+x^{2})+5\arctan x+C (12) 12arctan(x+12)+C\frac{1}{\sqrt{2}}\arctan(\frac{x+1}{\sqrt{2}})+C (13) Com a substituição u:=exu:=e^{x}, du=exdxdu=e^{x}dx, extan(ex)𝑑x=tanudu=ln|cosu|+C=ln|cos(ex)|+C\int e^{x}\tan(e^{x})dx=\int\tan udu=-\ln|\cos u|+C=-\ln|\cos(e^{x})|+C. (14) 12(1+y)211+y+C\frac{1}{2(1+y)^{2}}-\frac{1}{1+y}+C (15) 13(1+x2)32+C\frac{1}{3}(1+x^{2})^{\frac{3}{2}}+C (16) 12(1+x2)+C\frac{-1}{2(1+x^{2})}+C (17) 13sen3t+1sent+C-\frac{1}{3\operatorname{sen}^{3}t}+\frac{1}{\operatorname{sen}t}+C (a ideia aqui é escrever cos3tsen4t=cos2tsen4tcost=1sen2tsen4tcost\frac{\cos^{3}t}{\operatorname{sen}^{4}t}=\frac{\cos^{2}t}{\operatorname{sen}^% {4}t}\cos t=\frac{1-\operatorname{sen}^{2}t}{\operatorname{sen}^{4}t}\cos t) (18) (senx)44(senx)66\frac{(\operatorname{sen}x)^{4}}{4}-\frac{(\operatorname{sen}x)^{6}}{6} 9.16 (1) Com u=1x2u=1-x^{2}, du=2xdxdu=-2x\,dx, temos

2x3dx1x2𝑑x=x21x2(2x)𝑑x\displaystyle\int\frac{2x^{3}dx}{\sqrt{1-x^{2}}}\,dx=-\int\frac{x^{2}}{\sqrt{1% -x^{2}}}(-2x)\,dx =1uu𝑑u\displaystyle=-\int\frac{1-u}{\sqrt{u}}\,du
=2u+23u3/2+C\displaystyle=-2\sqrt{u}+\tfrac{2}{3}u^{3/2}+C
=21x2+23(1x2)3/2+C.\displaystyle=-2\sqrt{1-x^{2}}+\tfrac{2}{3}(1-x^{2})^{3/2}+C\,.

(2) Completando o quadrado, e fazendo a substituição u=2x1u=2x-1,

dxxx2=dx14(x12)2\displaystyle\int\frac{dx}{\sqrt{x-x^{2}}}=\int\frac{dx}{\sqrt{\tfrac{1}{4}-(x% -\tfrac{1}{2})^{2}}} =2dx1(2x1)2\displaystyle=\int\frac{2dx}{\sqrt{1-(2x-1)^{2}}}
=du1u2=arcsenu+C=arcsen(2x1)+C.\displaystyle=\int\frac{du}{\sqrt{1-u^{2}}}=\operatorname{arcsen}u+C=% \operatorname{arcsen}(2x-1)+C\,.

(3) Com u=lntu=\ln t, lnxx𝑑x=u𝑑u=u22+C=12(lnx)2+C\int\frac{\ln x}{x}\,dx=\int u\,du=\tfrac{u^{2}}{2}+C=\tfrac{1}{2}(\ln x)^{2}+C (4) Com u=exu=e^{x}, eexex𝑑x=eu𝑑u=eu+C=eex+C\int e^{e^{x}}e^{x}\,dx=\int e^{u}\,du=e^{u}+C=e^{e^{x}}+C. (5) x1+x𝑑x=x2x+2ln(1+x)+C\int\frac{\sqrt{x}}{1+\sqrt{x}}\,dx=x-2\sqrt{x}+2\ln(1+\sqrt{x})+C. (6) tan2xdx=(1+tan2x1)𝑑x=tanxx+C\int\tan^{2}x\,dx=\int(1+\tan^{2}x-1)\,dx=\tan x-x+C. 9.17 (1) senxxcosx+C\operatorname{sen}x-x\cos x+C, (2) 15xsen(5x)+125cos(5x)+C\frac{1}{5}x\operatorname{sen}(5x)+\frac{1}{25}\cos(5x)+C (3) Integrando duas vezes por partes:

x2cosxdx=x2senx(2x)senxdx=x2senx2{x(cosx)(cosx)dx.}\int x^{2}\cos x\,dx=x^{2}\operatorname{sen}x-\int(2x)\operatorname{sen}x\,dx=% x^{2}\operatorname{sen}x-2\Bigl{\{}x(-\cos x)-\int(-\cos x)\,dx\,.\Bigr{\}}

Portanto x2cosxdx=x2senx2(senxxcosx)+C\int x^{2}\cos x\,dx=x^{2}\operatorname{sen}x-2(\operatorname{sen}x-x\cos x)+C. (4) (x1)ex+C(x-1)e^{x}+C (5) 13e3x(x223x29)+C-\tfrac{1}{3}e^{-3x}(x^{2}-\tfrac{2}{3}x-\tfrac{2}{9})+C (6)

x3cos(x2)𝑑x=x2(xcos(x2))𝑑x\displaystyle\int x^{3}\cos(x^{2})\,dx=\int x^{2}(x\cos(x^{2}))\,dx =x2(12sen(x2))(2x)(12sen(x2))𝑑x\displaystyle=x^{2}(\tfrac{1}{2}\operatorname{sen}(x^{2}))-\int(2x)(\tfrac{1}{% 2}\operatorname{sen}(x^{2}))\,dx\,
=12x2sen(x2)+12cos(x2)+C.\displaystyle=\tfrac{1}{2}x^{2}\operatorname{sen}(x^{2})+\tfrac{1}{2}\cos(x^{2% })+C\,.

9.18 (1) arctanxdx=xarctanxx1+x2𝑑x=xarctanx12ln(1+x2)+C\int\arctan xdx=x\arctan x-\int\frac{x}{1+x^{2}}\,dx=x\arctan x-\tfrac{1}{2}% \ln(1+x^{2})+C. (2) x(lnx)22x(lnx1)+Cx(\ln x)^{2}-2x(\ln x-1)+C (3) xarcsenx+1x2+Cx\operatorname{arcsen}x+\sqrt{1-x^{2}}+C (4) xarctanxdx=12(x2arctanxx+arctanx)+C\int x\arctan x\,dx=\frac{1}{2}(x^{2}\arctan x-x+\arctan x)+C 9.19 (1) ex2(senx+cosx)+C-\frac{e^{-x}}{2}(\operatorname{sen}x+\cos x)+C (2) est1+s2(sentscost)+C\frac{e^{-st}}{1+s^{2}}(\operatorname{sen}t-s\cos t)+C (3) x2(sen(lnx)cos(lnx))+C\frac{x}{2}(\operatorname{sen}(\ln x)-\cos(lnx))+C 9.20 Chamando u=x+1u=\sqrt{x+1}, temos

03ex+1𝑑x=122ueu𝑑u=2{ueueu}|12=2e2.\int_{0}^{3}e^{\sqrt{x+1}}\,dx=\int_{1}^{2}2ue^{u}\,du=2\bigl{\{}ue^{u}-e^{u}% \bigr{\}}\big{|}_{1}^{2}=2e^{2}\,.

Chamando u=lnxu=\ln x, temos eudu=dxe^{u}\,du=dx, e

x(lnx)2𝑑x=u2e2u𝑑u=u22e2uu2e2u+14e2u+C.\int x(\ln x)^{2}\,dx=\int u^{2}e^{2u}\,du=\tfrac{u^{2}}{2}e^{2u}-\tfrac{u}{2}% e^{2u}+\tfrac{1}{4}e^{2u}+C\,.

Logo, x(lnx)2𝑑x=12x2(lnx)212x2lnx+14x2+C\int x(\ln x)^{2}\,dx=\tfrac{1}{2}x^{2}(\ln x)^{2}-\tfrac{1}{2}x^{2}\ln x+% \tfrac{1}{4}x^{2}+C. 9.21 Para ter 1x(x2+1)=Ax+Bx2+1\frac{1}{x(x^{2}+1)}=\frac{A}{x}+\frac{B}{x^{2}+1}, isto é 1=A(x2+1)+Bx1=A(x^{2}+1)+Bx, AA e BB devem satisfazer às três condições A=0A=0, B=0B=0, A=1A=1, que obviamente é impossível. 9.22 Para ter 1x(x+1)2=Ax+B(x+1)2\frac{1}{x(x+1)^{2}}=\frac{A}{x}+\frac{B}{(x+1)^{2}}, isto é 1=A(x+1)2+Bx1=A(x+1)^{2}+Bx, AA e BB precisariam satisfazer às três condições A=0A=0, 2A+B=02A+B=0, A=1A=1, que obviamente é impossível. 9.23 (1) 12arctan(2x)+C\tfrac{1}{\sqrt{2}}\arctan(\sqrt{2}x)+C (2) Como x5x2+1=x3x+xx2+1\frac{x^{5}}{x^{2}+1}=x^{3}-x+\frac{x}{x^{2}+1}, temos x5x2+1𝑑x=x44x22+12ln(x2+1)+C\int\frac{x^{5}}{x^{2}+1}\,dx=\tfrac{x^{4}}{4}-\tfrac{x^{2}}{2}+\tfrac{1}{2}% \ln(x^{2}+1)+C. (3) 1x+2+C\frac{-1}{x+2}+C

(4) A decomposição em frações parciais é da forma 1x(x+1)=Ax+Bx+1\frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1}. Colocando no mesmo denominador, AA e BB tem que satisfazer 1=(A+B)x+A1=(A+B)x+A para todo xx. Logo, A=1A=1 e B=1B=-1. Isto é, 1x2+x=1x1x+1\frac{1}{x^{2}+x}=\frac{1}{x}-\frac{1}{x+1}. Logo,

1x2+x𝑑x\displaystyle\int\frac{1}{x^{2}+x}\,dx =1x𝑑x1x+1𝑑x\displaystyle=\int\frac{1}{x}\,dx-\int\frac{1}{x+1}\,dx
=ln|x|ln|x+1|+C,\displaystyle=\ln|x|-\ln|x+1|+C\,,\quad\quad

(5) O integrante é da forma P(x)Q(x)\frac{P(x)}{Q(x)}, em que o grau de PP é menor do que o de QQ. Além disso, podemos fatorar x3+x=x(x2+1)x^{3}+x=x(x^{2}+1). O polimômio de ordem 22 tem discriminante negativo. Logo, é irredutível, e podemos tentar uma decomposição da forma

1x(x2+1)=Ax+Bx+Cx2+1x.\frac{1}{x(x^{2}+1)}=\frac{A}{x}+\frac{Bx+C}{x^{2}+1}\quad\forall x\,.

Colocando no mesmo denominador, AA BB e CC tem que satisfazer 1=(A+B)x2+Cx+A1=(A+B)x^{2}+Cx+A para todo xx. Logo, A=1A=1, C=0C=0, e B=A=1B=-A=-1. Isto é,

1x3+x𝑑x=1x𝑑xxx2+1𝑑x\displaystyle\int\frac{1}{x^{3}+x}\,dx=\int\frac{1}{x}\,dx-\int\frac{x}{x^{2}+% 1}\,dx =ln|x|xx2+1𝑑x\displaystyle=\ln|x|-\int\frac{x}{x^{2}+1}\,dx
=ln|x|12ln(x2+1)+C,\displaystyle=\ln|x|-\tfrac{1}{2}\ln(x^{2}+1)+C\,,\quad\quad

Nesta última integral, fizemos u=x2+1u=x^{2}+1, du=2xdxdu=2x\,dx. (6) Como Δ=16>0\Delta=16>0, podemos procurar fatorar e fazer uma separação em frações parciais,

dxx2+2x3=dx(x+3)(x1)=14dxx+3+14dxx1=14ln|x1x+3|+C.\int\frac{dx}{x^{2}+2x-3}=\int\frac{dx}{(x+3)(x-1)}=-\tfrac{1}{4}\int\frac{dx}% {x+3}+\tfrac{1}{4}\int\frac{dx}{x-1}=\tfrac{1}{4}\ln\Bigl{|}\frac{x-1}{x+3}% \Bigr{|}+C\,.

(7) Como Δ=8<0\Delta=-8<0, o denominador não se fatora. Completando o quadrado,

dxx2+2x+3=dx(x+1)2+2=12dx(x+12)2+1=12arctan(x+12)+C.\int\frac{dx}{x^{2}+2x+3}=\int\frac{dx}{(x+1)^{2}+2}=\tfrac{1}{2}\int\frac{dx}% {(\frac{x+1}{\sqrt{2}})^{2}+1}=\tfrac{1}{\sqrt{2}}\arctan\bigl{(}\frac{x+1}{% \sqrt{2}}\bigr{)}+C\,.

(8) Como 1x(x2)2=14x14(x2)+12(x2)2\frac{1}{x(x-2)^{2}}=\frac{1}{4x}-\frac{1}{4(x-2)}+\frac{1}{2(x-2)^{2}}, temos

dxx(x2)2=14ln|x|14ln|x2|12(x2)+C.\int\frac{dx}{x(x-2)^{2}}=\tfrac{1}{4}\ln|x|-\tfrac{1}{4}\ln|x-2|-\frac{1}{2(x% -2)}+C\,.

(9) 1x2(x+1)=Ax+Bx2+Cx+1\frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}, com A=1A=-1, B=1B=1, C=1C=1. Logo,

dxx2(x+1)=ln|x|1x+ln|x+1|+C.\int\frac{dx}{x^{2}(x+1)}=-\ln|x|-\tfrac{1}{x}+\ln|x+1|+C^{\prime}\,.

(10) Como t4+t3=t3(t+1)t^{4}+t^{3}=t^{3}(t+1), procuramos uma separação da forma

1t4+t3=At+Bt2+Ct3+Dt+1t.\frac{1}{t^{4}+t^{3}}=\frac{A}{t}+\frac{B}{t^{2}}+\frac{C}{t^{3}}+\frac{D}{t+1% }\,\quad\forall t.

Colocando no mesmo denominador e juntando os termos vemos que A,B,C,DA,B,C,D têm que satisfazer

1=(A+D)t3+(A+B)t2+(B+C)t+Ct.1=(A+D)t^{3}+(A+B)t^{2}+(B+C)t+C\quad\forall t\,.

Identificando os coeficientes obtemos C=1C=1, B=C=1B=-C=-1, A=B=+1A=-B=+1, e D=A=1D=-A=-1. Isso implica

1t4+t3𝑑t\displaystyle\int\frac{1}{t^{4}+t^{3}}dt =dttdtt2+dtt3dtt+1\displaystyle=\int\frac{dt}{t}-\int\frac{dt}{t^{2}}+\int\frac{dt}{t^{3}}-\int% \frac{dt}{t+1}
=ln|t|+1t12t2ln|t+1|+C.\displaystyle=\ln|t|+\frac{1}{t}-\frac{1}{2t^{2}}-\ln|t+1|+C\,.

(11)

dxx(x+1)3\displaystyle\int\frac{dx}{x(x+1)^{3}} =dxxdxx+1dx(x+1)2dx(x+1)3\displaystyle=\int\frac{dx}{x}-\int\frac{dx}{x+1}-\int\frac{dx}{(x+1)^{2}}-% \int\frac{dx}{(x+1)^{3}}
=ln|x|ln|x+1|+1x+1+12(x+1)2+C.\displaystyle=\ln|x|-\ln|x+1|+\frac{1}{x+1}+\frac{1}{2(x+1)^{2}}+C\,.

(12) x2+1x3+x𝑑x=dxx=ln|x|+C\int\frac{x^{2}+1}{x^{3}+x}\,dx=\int\frac{dx}{x}=\ln|x|+C (13) Com u=x41u=x^{4}-1, x3x41𝑑x=14ln|x41|+C\int\frac{x^{3}}{x^{4}-1}\,dx=\tfrac{1}{4}\ln|x^{4}-1|+C (é bem mais simples do que começar uma decomposição em frações parciais…) (14) Começando com uma integração por partes,

xlnx(x2+1)2𝑑x=12(x2+1)lnx+121(x2+1)x𝑑x,\int\frac{x\ln x}{(x^{2}+1)^{2}}\,dx=\frac{-1}{2(x^{2}+1)}\ln x+\frac{1}{2}% \int\frac{1}{(x^{2}+1)x}\,dx\,,

e essa última integral se calcula como no Exemplo 9.23. (15) Primeiro, observe que x3+1x^{3}+1 possui x=1x=-1 como raiz. Logo, ele pode ser fatorado como x3+1=(x+1)(x2x+1)x^{3}+1=(x+1)(x^{2}-x+1). Como x2x+1x^{2}-x+1 tem um discriminante negativo, procuremos uma decomposição da forma

1x3+1=Ax+1+Bx+Cx2x+1.\frac{1}{x^{3}+1}=\frac{A}{x+1}+\frac{Bx+C}{x^{2}-x+1}\,.

É fácil ver que AA, BB e CC satisfazem às três condições A+B=0A+B=0, A+B+C=0-A+B+C=0, A+C=1A+C=1. Logo, A=13A=\frac{1}{3}, B=13B=-\frac{1}{3}, C=23C=\frac{2}{3}. Escrevendo

dxx3+1\displaystyle\int\frac{dx}{x^{3}+1} =13dxx+113x2x2x+1𝑑x\displaystyle=\tfrac{1}{3}\int\frac{dx}{x+1}-\tfrac{1}{3}\int\frac{x-2}{x^{2}-% x+1}\,dx
=13ln|x+1|13x2x2x+1𝑑x\displaystyle=\tfrac{1}{3}\ln|x+1|-\tfrac{1}{3}\int\frac{x-2}{x^{2}-x+1}\,dx

Agora,

x2x2x+1𝑑x\displaystyle\int\frac{x-2}{x^{2}-x+1}\,dx =122x1x2x+1𝑑x32dxx2x+1\displaystyle=\tfrac{1}{2}\int\frac{2x-1}{x^{2}-x+1}\,dx-\tfrac{3}{2}\int\frac% {dx}{x^{2}-x+1}
=12ln|x2x+1|32dxx2x+1\displaystyle=\tfrac{1}{2}\ln|x^{2}-x+1|-\tfrac{3}{2}\int\frac{dx}{x^{2}-x+1}
=12ln|x2x+1|43arctan(23(x12))+C.\displaystyle=\tfrac{1}{2}\ln|x^{2}-x+1|-\tfrac{4}{\sqrt{3}}\arctan\bigl{(}% \tfrac{2}{\sqrt{3}}(x-\tfrac{1}{2})\bigr{)}+C\,.

Juntando,

dxx3+1=13ln|x+1|16ln|x2x+1|+433arctan(23(x12))+C.\int\frac{dx}{x^{3}+1}=\tfrac{1}{3}\ln|x+1|-\tfrac{1}{6}\ln|x^{2}-x+1|+\tfrac{% 4}{3\sqrt{3}}\arctan\bigl{(}\tfrac{2}{\sqrt{3}}(x-\tfrac{1}{2})\bigr{)}+C\,.

9.24 Com a dica, e a substituição u=senxu=\operatorname{sen}x,

dxcosx=cosx1sen2x𝑑x=du1u2\displaystyle\int\frac{dx}{\cos x}=\int\frac{\cos x}{1-\operatorname{sen}^{2}x% }dx=\int\frac{du}{1-u^{2}} =duu21\displaystyle=-\int\frac{du}{u^{2}-1}
=12ln|u1u+1|+C\displaystyle=-\tfrac{1}{2}\ln\Bigl{|}\frac{u-1}{u+1}\Bigr{|}+C
=12ln|1+senx1senx|+C\displaystyle=\tfrac{1}{2}\ln\Bigl{|}\frac{1+\operatorname{sen}x}{1-% \operatorname{sen}x}\Bigr{|}+C

Observe que essa última expressão pode ser transformada da seguinte maneira:

12ln|senx+1senx1|=12ln|(1+senx)2cos2x|=ln|1+senxcosx|=ln|1cosx+tanx|.\displaystyle\tfrac{1}{2}\ln\Bigl{|}\frac{\operatorname{sen}x+1}{\operatorname% {sen}x-1}\Bigr{|}=\tfrac{1}{2}\ln\Bigl{|}\frac{(1+\operatorname{sen}x)^{2}}{% \cos^{2}x}\Bigr{|}=\ln\Bigl{|}\frac{1+\operatorname{sen}x}{\cos x}\Bigr{|}=\ln% \Bigl{|}\frac{1}{\cos x}+\tan x\Bigr{|}\,.

9.25 Como Δ=42413<0\Delta=4^{2}-4\cdot 13<0, o polinômio x2+4x+13x^{2}+4x+13 tem discriminante negativo. Logo, completando o quadrado: x2+4x+13=(x+2)24+13=(x+2)2+9x^{2}+4x+13=(x+2)^{2}-4+13=(x+2)^{2}+9, e

xx2+4x+13𝑑x=x(x+2)2+9𝑑x=19x(13(x+2))2+1𝑑x\displaystyle\int\frac{x}{x^{2}+4x+13}dx=\int\frac{x}{(x+2)^{2}+9}dx=\tfrac{1}% {9}\int\frac{x}{(\tfrac{1}{3}(x+2))^{2}+1}dx

Com u=13(x+2)u=\frac{1}{3}(x+2), x=3u2x=3u-2, 3du=dx3du=dx,

19x(13(x+2))2+1𝑑x\displaystyle\tfrac{1}{9}\int\frac{x}{(\tfrac{1}{3}(x+2))^{2}+1}dx =133u2u2+1𝑑u\displaystyle=\tfrac{1}{3}\int\frac{3u-2}{u^{2}+1}du
=122uu2+1𝑑u23duu2+1\displaystyle=\tfrac{1}{2}\int\frac{2u}{u^{2}+1}du-\tfrac{2}{3}\int\frac{du}{u% ^{2}+1}
=12ln(u2+1)23arctan(u)+C\displaystyle=\tfrac{1}{2}\ln(u^{2}+1)-\tfrac{2}{3}\arctan(u)+C
=12ln(x2+4x+13)23arctan(13(x+2))+C\displaystyle=\tfrac{1}{2}\ln(x^{2}+4x+13)-\tfrac{2}{3}\arctan(\frac{1}{3}(x+2% ))+C

9.26 (1) cosx+13cos3x+C-\cos x+\tfrac{1}{3}\cos^{3}x+C (2) Com u=senxu=\operatorname{sen}x, cos5xdx=(1u2)2𝑑u==senx23sen3x+15sen5x+C\int\cos^{5}x\,dx=\int(1-u^{2})^{2}\,du=\cdots=\operatorname{sen}x-\tfrac{2}{3% }\operatorname{sen}^{3}x+\tfrac{1}{5}\operatorname{sen}^{5}x+C (3) Escrevemos (cosxsenx)5𝑑x=sen5x(1sen2x)2cosxdx\int(\cos x\operatorname{sen}x)^{5}dx=\int\operatorname{sen}^{5}x(1-% \operatorname{sen}^{2}x)^{2}\cos xdx. Com u=senxu=\operatorname{sen}x

sen5x(1sen2x)2cosxdx\displaystyle\int\operatorname{sen}^{5}x(1-\operatorname{sen}^{2}x)^{2}\cos xdx =u5(1u2)2𝑑u\displaystyle=\int u^{5}(1-u^{2})^{2}du
=(u52u7+u9)𝑑u\displaystyle=\int(u^{5}-2u^{7}+u^{9})du
=u662u88+u1010+C\displaystyle=\frac{u^{6}}{6}-2\frac{u^{8}}{8}+\frac{u^{10}}{10}+C
=sen6x6sen8x4+sen10x10+C.\displaystyle=\frac{\operatorname{sen}^{6}x}{6}-\frac{\operatorname{sen}^{8}x}% {4}+\frac{\operatorname{sen}^{10}x}{10}+C\,.

(4) cos1001x1001+C-\frac{\cos^{1001}x}{1001}+C (5) Com u=sentu=\operatorname{sen}t, (sen2tcost)esent𝑑t=u2eu𝑑u\int(\operatorname{sen}^{2}t\cos t)e^{\operatorname{sen}t}dt=\int u^{2}e^{u}du. Integrando duas vezes por partes e voltando para a variável tt,

u2eu𝑑u\displaystyle\int u^{2}e^{u}du =u2eu(2u)eu𝑑u\displaystyle=u^{2}e^{u}-\int(2u)e^{u}du
=u2eu2{ueueu𝑑u}\displaystyle=u^{2}e^{u}-2\big{\{}ue^{u}-\int e^{u}du\big{\}}
=u2eu2{ueueu}+C\displaystyle=u^{2}e^{u}-2\{ue^{u}-e^{u}\}+C
=eu(u22u+2)+C\displaystyle=e^{u}(u^{2}-2u+2)+C
=esent(sen2t2sent+2)+C.\displaystyle=e^{\operatorname{sen}t}(\operatorname{sen}^{2}t-2\operatorname{% sen}t+2)+C\,.

(6) Com u=cosxu=\cos x, sen3xcosxdx=(1u2)u𝑑u=(u1/2u5/2)𝑑u=23u3/2+27u7/2+C=23(cosx)3/2+27(cosx)7/2+C\int\operatorname{sen}^{3}x\sqrt{\cos x}\,dx=-\int(1-u^{2})\sqrt{u}\,du=-\int(% u^{1/2}-u^{5/2})\,du=-\tfrac{2}{3}u^{3/2}+\tfrac{2}{7}u^{7/2}+C=-\tfrac{2}{3}(% \cos x)^{3/2}+\tfrac{2}{7}(\cos x)^{7/2}+C. (7) sen2xcos2xdx=(1cos2x)cos2xdx=cos2xdxcos4xdx\int\operatorname{sen}^{2}x\cos^{2}x\,dx=\int(1-\cos^{2}x)\cos^{2}x\,dx=\int% \cos^{2}x\,dx-\int\cos^{4}x\,dx, e essas duas primitivas já foram calculadas anteriormente. 9.27 (1) sec2xdx=tanx+C\int\sec^{2}x\,dx=\tan x+C. (2) tan2xdx=(tan2x+11)𝑑x=tanxx+C\int\tan^{2}x\,dx=\int(\tan^{2}x+1-1)\,dx=\tan x-x+C. (3) tan3xdx=tanx(1+tan2x)𝑑xtanxdx=12tan2xln|cosx|+C\int\tan^{3}x\,dx=\int\tan x(1+\tan^{2}x)\,dx-\int\tan x\,dx=\tfrac{1}{2}\tan^% {2}x-\ln|\cos x|+C. (4) tanxsecxdx=secx+C\int\tan x\sec x\,dx=\sec x+C. (5) tan4xsec4xdx=tan4x(tan2x+1)sec2xdx=u4(u2+1)𝑑u=17u7+15u5+C=17tan7x+15tan5x+C\int\tan^{4}x\sec^{4}x\,dx=\int\tan^{4}x(\tan^{2}x+1)\sec^{2}x\,dx=\int u^{4}(% u^{2}+1)\,du=\tfrac{1}{7}u^{7}+\tfrac{1}{5}u^{5}+C=\tfrac{1}{7}\tan^{7}x+% \tfrac{1}{5}\tan^{5}x+C. (6) cos5xtan5xdx=sen5xdx=(1cos2x)2senxdx=(1u2)2𝑑u=u+23u315u5+C=cosx+23cos3x15cos5x+C\int\cos^{5}x\tan^{5}x\,dx=\int\operatorname{sen}^{5}x\,dx=\int(1-\cos^{2}x)^{% 2}\operatorname{sen}x\,dx=-\int(1-u^{2})^{2}\,du=-u+\tfrac{2}{3}u^{3}-\tfrac{1% }{5}u^{5}+C=-\cos x+\tfrac{2}{3}\cos^{3}x-\tfrac{1}{5}\cos^{5}x+C. (7) sec5xtan3xdx=sec4x(sec2x1)(tanxsecx)𝑑x=w4(w21)𝑑w=17w715w5+C=17sec7x15sec5x+C\int\sec^{5}x\tan^{3}x\,dx=\int\sec^{4}x(\sec^{2}x-1)(\tan x\sec x)\,dx=\int w% ^{4}(w^{2}-1)\,dw=\tfrac{1}{7}w^{7}-\tfrac{1}{5}w^{5}+C=\tfrac{1}{7}\sec^{7}x-% \tfrac{1}{5}\sec^{5}x+C. (8) Por partes (lembra que (secθ)=tanθsecθ(\sec\theta)^{\prime}=\tan\theta\sec\theta):

sec2θsecθdθ\displaystyle\int\sec^{2}\theta\sec\theta\,d\theta =tanθsecθtan2θsecθdθ\displaystyle=\tan\theta\sec\theta-\int\tan^{2}\theta\sec\theta\,d\theta
=tanθsecθ(sec2θ1)secθdθ.\displaystyle=\tan\theta\sec\theta-\int(\sec^{2}\theta-1)\sec\theta\,d\theta\,.

Logo,

sec3θdθ=12tanθsecθ+12secθdθ.\int\sec^{3}\theta\,d\theta=\tfrac{1}{2}\tan\theta\sec\theta+\tfrac{1}{2}\int% \sec\theta\,d\theta\,.

Já calculamos a primitiva de secθ\sec\theta no Exercício 9.24: secθdθ=ln|secθ+tanθ|+C\int\sec\theta\,d\theta=\ln\bigl{|}\sec\theta+\tan\theta\bigr{|}+C. Logo,

sec3θdθ=12tanθsecθ+12ln|secθ+tanθ|+C.\int\sec^{3}\theta\,d\theta=\tfrac{1}{2}\tan\theta\sec\theta+\tfrac{1}{2}\ln% \bigl{|}\sec\theta+\tan\theta\bigr{|}+C\,.

9.28 De fato,

(12arcsenx+12x1x2)\displaystyle\bigl{(}\tfrac{1}{2}\operatorname{arcsen}x+\tfrac{1}{2}x\sqrt{1-x% ^{2}}\bigr{)}^{\prime} =1211x2+121x2+12x2x21x2\displaystyle=\tfrac{1}{2}\frac{1}{\sqrt{1-x^{2}}}+\tfrac{1}{2}\sqrt{1-x^{2}}+% \tfrac{1}{2}x\frac{-2x}{2\sqrt{1-x^{2}}}
=121x21x2+121x2\displaystyle=\tfrac{1}{2}\frac{1-x^{2}}{\sqrt{1-x^{2}}}+\tfrac{1}{2}\sqrt{1-x% ^{2}}
=121x2+121x2=1x2.\displaystyle=\tfrac{1}{2}\sqrt{1-x^{2}}+\tfrac{1}{2}\sqrt{1-x^{2}}=\sqrt{1-x^% {2}}\,.

9.29 A área é dada por A=40αβ1x2α2𝑑xA=4\int_{0}^{\alpha}\beta\sqrt{1-\frac{x^{2}}{\alpha^{2}}}\,dx. Com x=αsenθx=\alpha\operatorname{sen}\theta,

A=4β0α1x2α2𝑑x=4αβ0π2cos2θdθ=παβ.A=4\beta\int_{0}^{\alpha}\sqrt{1-\frac{x^{2}}{\alpha^{2}}}\,dx=4\alpha\beta% \int_{0}^{\tfrac{\pi}{2}}\cos^{2}\theta\,d\theta=\pi\alpha\beta\,.

Quando α=β=R\alpha=\beta=R, a elipse é um disco de raio RR, de área πRR=πR2\pi R\cdot R=\pi R^{2}. 9.30 (1) Sabemos que dx1x2=arcsenx+C\int\frac{dx}{\sqrt{1-x^{2}}}=\operatorname{arcsen}x+C, mas isso pode ser verificado de novo fazendo a substituição x=senθx=\operatorname{sen}\theta: dx1x2=11sen2θcosθdθ𝑑θ=θ+C=arcsenx+C\frac{dx}{\sqrt{1-x^{2}}}=\int\frac{1}{\sqrt{1-\operatorname{sen}^{2}\theta}}% \cos\theta\,d\theta\int d\theta=\theta+C=\operatorname{arcsen}x+C. (2) Com x=10sentx=\sqrt{10}\operatorname{sen}t

x710x2𝑑x=107sen7t10cost10costdt\displaystyle\int\frac{x^{7}}{\sqrt{10-x^{2}}}dx=\int\frac{\sqrt{10}^{7}% \operatorname{sen}^{7}t}{\sqrt{10}\cos t}\sqrt{10}\cos tdt =107sen7tdt\displaystyle=\sqrt{10}^{7}\int\operatorname{sen}^{7}tdt

Uma segunda substituição u=costu=\cos t

sen7tdt\displaystyle\int\operatorname{sen}^{7}tdt =(1cos2t)3sentdt\displaystyle=\int(1-\cos^{2}t)^{3}\operatorname{sen}tdt
=(1u2)3𝑑u\displaystyle=-\int(1-u^{2})^{3}du
=(13u2+3u4u6)𝑑u\displaystyle=-\int(1-3u^{2}+3u^{4}-u^{6})du
={uu3+35u517u7}+C\displaystyle=-\Big{\{}u-u^{3}+\frac{3}{5}u^{5}-\frac{1}{7}u^{7}\Big{\}}+C

Para voltar para xx, observe que u=cost=1sen2t=1(x/10)2u=\cos t=\sqrt{1-\operatorname{sen}^{2}t}=\sqrt{1-(x/\sqrt{10})^{2}}. Logo,

x710x2𝑑x=107{1x210+1x2103351x2105+171x2107}+C\int\frac{x^{7}}{\sqrt{10-x^{2}}}dx=\sqrt{10}^{7}\Bigl{\{}-\sqrt{1-\frac{x^{2}% }{10}}+\sqrt{1-\frac{x^{2}}{10}}^{3}-\frac{3}{5}\sqrt{1-\frac{x^{2}}{10}}^{5}+% \frac{1}{7}\sqrt{1-\frac{x^{2}}{10}}^{7}\Bigr{\}}+C

(3) Observe que 1x3\sqrt{1-x^{3}} não é da forma a2b2x2\sqrt{a^{2}-b^{2}x^{2}}! Mas com a substituição u=1x3u=1-x^{3}, x21x3𝑑x=13duu=23u+C=231x3+C\int\frac{x^{2}}{\sqrt{1-x^{3}}}\,dx=-\tfrac{1}{3}\int\frac{du}{\sqrt{u}}=-% \tfrac{2}{3}\sqrt{u}+C=-\tfrac{2}{3}\sqrt{1-x^{3}}+C. (4) Aqui uma simples substituição u=1x2u=1-x^{2}x1x2𝑑x=13(1x2)3/2+C\int x\sqrt{1-x^{2}}\,dx=-\tfrac{1}{3}(1-x^{2})^{3/2}+C. (Pode também fazer x=senθx=\operatorname{sen}\theta, é um pouco mais longo.) (5) Completando o quadrado, 32xx2=4(x+1)23-2x-x^{2}=4-(x+1)^{2}. Chamando x+1=2senθx+1=2\operatorname{sen}\theta,

x32xx2𝑑x=2senθ144sen2θ2cosθdθ\displaystyle\int\frac{x}{\sqrt{3-2x-x^{2}}}\,dx=\int\frac{2\operatorname{sen}% \theta-1}{\sqrt{4-4\operatorname{sen}^{2}\theta}}2\cos\theta\,d\theta =2senθdθ𝑑θ\displaystyle=2\int\operatorname{sen}\theta\,d\theta-\int\,d\theta
=2cosθθ+C.\displaystyle=-2\cos\theta-\theta+C\,.

Voltando para xx, temos

x32xx2𝑑x=21(x+12)2arcsen(x+12)+C.\int\frac{x}{\sqrt{3-2x-x^{2}}}\,dx=-2\sqrt{1-(\tfrac{x+1}{2})^{2}}-% \operatorname{arcsen}(\tfrac{x+1}{2})+C\,.

(6) Com x=3senθx=3\operatorname{sen}\theta obtemos x29x2𝑑x=34sen2θcos2θdθ\int x^{2}{\sqrt{9-x^{2}}}\,dx=3^{4}\int\operatorname{sen}^{2}\theta\cos^{2}% \theta\,d\theta. 9.31 (1) fazendo x=12tanθx=\tfrac{1}{2}\tan\theta

x34x2+1𝑑x\displaystyle\int\frac{x^{3}}{\sqrt{4x^{2}+1}}dx =(12tanθ)3sec2θ12sec2θdθ\displaystyle=\int\frac{(\tfrac{1}{2}\tan\theta)^{3}}{\sqrt{\sec^{2}\theta}}% \frac{1}{2}\sec^{2}\theta d\theta
=116tan3θsecθdθ\displaystyle=\tfrac{1}{16}\int\tan^{3}\theta\sec\theta d\theta
=116(sec2θ1)secθtanθdθ\displaystyle=\tfrac{1}{16}\int(\sec^{2}\theta-1)\sec\theta\tan\theta d\theta

Com w=secθw=\sec\theta, obtemos (sec2θ1)secθtanθdθ=sec3θ3secθ+C\int(\sec^{2}\theta-1)\sec\theta\tan\theta d\theta=\frac{\sec^{3}\theta}{3}-{% \sec\theta}+C. Mas tanθ=2x\tan\theta=2x implica secθ=tan2θ+1=1+4x2\sec\theta=\sqrt{\tan^{2}\theta+1}=\sqrt{1+4x^{2}}. Logo,

x34x2+1𝑑x=(1+4x2)32481+4x216+C.\int\frac{x^{3}}{\sqrt{4x^{2}+1}}dx=\frac{(1+4x^{2})^{\frac{3}{2}}}{48}-\frac{% \sqrt{1+4x^{2}}}{16}+C\,.

Observe que pode também rearranjar um pouco a função e fazer por partes:

x34x2+1𝑑x\displaystyle\int\frac{x^{3}}{\sqrt{4x^{2}+1}}dx =14x28x24x2+1𝑑x\displaystyle=\tfrac{1}{4}\int x^{2}\frac{8x}{2\sqrt{4x^{2}+1}}dx
=14{x24x2+1(2x)4x2+1𝑑x}\displaystyle=\tfrac{1}{4}\Bigl{\{}x^{2}\sqrt{4x^{2}+1}-\int(2x)\sqrt{4x^{2}+1% }dx\Bigr{\}}
=14{x24x2+114(4x2+1)3/23/2}+C,\displaystyle=\tfrac{1}{4}\Bigl{\{}x^{2}\sqrt{4x^{2}+1}-\tfrac{1}{4}\frac{(4x^% {2}+1)^{3/2}}{3/2}\Bigr{\}}+C\,,

dá na mesma! (2) Com x=tanθx=\tan\theta, temos

x3x2+1𝑑x\displaystyle\int x^{3}\sqrt{x^{2}+1}\,dx =tan3θsec3θdθ\displaystyle=\int\tan^{3}\theta\sec^{3}\theta\,d\theta
=(sec2θ1)sec2θ(tanθsecθ)𝑑θ\displaystyle=\int(\sec^{2}\theta-1)\sec^{2}\theta(\tan\theta\sec\theta)\,d\theta
(via w=secθ)\displaystyle(\text{via }w=\sec\theta)\, =15sec5θ13sec3θ+C\displaystyle=\tfrac{1}{5}\sec^{5}\theta-\tfrac{1}{3}\sec^{3}\theta+C
=15(x2+1)5/213(x2+1)3/2+C.\displaystyle=\tfrac{1}{5}(x^{2}+1)^{5/2}-\tfrac{1}{3}(x^{2}+1)^{3/2}+C\,.

(3) Aqui não precisa fazer substituição trigonométrica: u=x2+a2u=x^{2}+a^{2}xx2+a2𝑑x=12u𝑑u=13u3/2+C=13(x2+a2)3/2+C\int x\sqrt{x^{2}+a^{2}}\,dx=\tfrac{1}{2}\int\sqrt{u}\,du=\tfrac{1}{3}u^{3/2}+% C=\tfrac{1}{3}(x^{2}+a^{2})^{3/2}+C. (4) Como x2+2x+2=(x+1)2+1x^{2}+2x+2=(x+1)^{2}+1, a substituição x+1=tanθx+1=\tan\thetadxx2+2x+2=sec2θsecθdθ=secθdθ=ln|secθ+tanθ|+C=ln|x+1+x2+2x+2|+C\int\frac{dx}{\sqrt{x^{2}+2x+2}}=\int\frac{\sec^{2}\theta}{\sec\theta}\,d% \theta=\int\sec\theta\,d\theta=\ln|\sec\theta+\tan\theta|+C=\ln\bigl{|}x+1+% \sqrt{x^{2}+2x+2}\bigr{|}+C. (5) Apesar da função 1(x2+1)3\frac{1}{(x^{2}+1)^{3}} não possuir raizes, façamos a substituição x=tanθx=\tan\theta:

dx(x2+1)3\displaystyle\int\frac{dx}{(x^{2}+1)^{3}} =sec2θ(tan2θ+1)3𝑑θ=dθsec4θ=cos4θdθ.\displaystyle=\int\frac{\sec^{2}\theta}{(\tan^{2}\theta+1)^{3}}\,d\theta=\int% \frac{d\theta}{\sec^{4}\theta}=\int\cos^{4}\theta\,d\theta\,.

Essa última primitiva já foi calculada em (9.29): cos4θdθ=14senθcos3θ+3θ8+316sen(2θ)+C\int\cos^{4}\theta\,d\theta=\tfrac{1}{4}\operatorname{sen}\theta\cos^{3}\theta% +\tfrac{3\theta}{8}+\tfrac{3}{16}\operatorname{sen}(2\theta)+C. Ora, se tanθ=x\tan\theta=x, então senθ=x1+x2\operatorname{sen}\theta=\frac{x}{\sqrt{1+x^{2}}} e cosθ=11+x2\cos\theta=\frac{1}{\sqrt{1+x^{2}}}. Logo,

dx(x2+1)3=x4(1+x2)2+38{arctanx+x1+x2}+C.\int\frac{dx}{(x^{2}+1)^{3}}=\frac{x}{4(1+x^{2})^{2}}+\frac{3}{8}\Bigl{\{}% \arctan x+\frac{x}{1+x^{2}}\Bigr{\}}+C\,.

(6) Com x=2tanθx=2\tan\theta, dxx2x2+4=14cosθsen2θ𝑑θ=14senθ+C\int\frac{dx}{x^{2}\sqrt{x^{2}+4}}=\tfrac{1}{4}\int\frac{\cos\theta}{% \operatorname{sen}^{2}\theta}\,d\theta=-\frac{1}{4\operatorname{sen}\theta}+C. Agora observe que 2tanθ=x2\tan\theta=x implica senθ=xx2+4\operatorname{sen}\theta=\frac{x}{\sqrt{x^{2}+4}}. Logo, dxx2x2+4=x2+44x+C\int\frac{dx}{x^{2}\sqrt{x^{2}+4}}=-\frac{\sqrt{x^{2}+4}}{4x}+C. 9.32 Já montamos a integral no Exemplo 10.2, e esta pode ser calculada com os métodos dessa seção: L=2011+4x2𝑑x=54+12ln(12+52)L=2\int_{0}^{1}\sqrt{1+4x^{2}}\,dx=\frac{\sqrt{5}}{4}+\frac{1}{2}\ln(\frac{1}{% 2}+\frac{\sqrt{5}}{2}). 9.33 (1) Seja x=3secθx=\sqrt{3}\sec\theta. Então dx=3secθtanθdx=\sqrt{3}\sec\theta\tan\theta, e

x3x23𝑑x\displaystyle\int x^{3}\sqrt{x^{2}-3}dx =(3secθ)33tanθ3secθtanθdθ\displaystyle=\int(\sqrt{3}\sec\theta)^{3}\sqrt{3}\tan\theta\sqrt{3}\sec\theta% \tan\theta d\theta
=35{sec2θtan2θ}sec2θdθ\displaystyle=\sqrt{3}^{5}\int\{\sec^{2}\theta\tan^{2}\theta\}\sec^{2}\theta d\theta
( com u=tanθ)\displaystyle(\text{ com }u=\tan\theta) =35(u2+1)u2𝑑u\displaystyle=\sqrt{3}^{5}\int(u^{2}+1)u^{2}du
=35(u5/5+u3/3)+C\displaystyle=\sqrt{3}^{5}(u^{5}/5+u^{3}/3)+C

Mas como cosθ=3/x\cos\theta=\sqrt{3}/x, temos (fazer um desenho) u=tanθ=x23/3u=\tan\theta=\sqrt{x^{2}-3}/\sqrt{3}. Logo,

x3x23𝑑x=15x235+x233+C\int x^{3}\sqrt{x^{2}-3}dx=\tfrac{1}{5}\sqrt{x^{2}-3}^{5}+\sqrt{x^{2}-3}^{3}+C

Um outro jeito de calcular essa primitiva é de começar com uma integração por partes:

x3x23𝑑x=12x2{2xx23}𝑑x\displaystyle\int x^{3}\sqrt{x^{2}-3}dx=\tfrac{1}{2}\int x^{2}\,\big{\{}2x% \sqrt{x^{2}-3}\big{\}}dx =12{x2(x23)3/23/22x(x23)3/23/2𝑑x}\displaystyle=\tfrac{1}{2}\Big{\{}x^{2}\frac{(x^{2}-3)^{3/2}}{3/2}-\int 2x% \frac{(x^{2}-3)^{3/2}}{3/2}dx\Big{\}}
=12{x2(x23)3/23/2232x(x23)3/2𝑑x}\displaystyle=\tfrac{1}{2}\Big{\{}x^{2}\frac{(x^{2}-3)^{3/2}}{3/2}-\tfrac{2}{3% }\int 2x{(x^{2}-3)^{3/2}}dx\Big{\}}
=12{x2(x23)3/23/223(x23)5/25/2}+C\displaystyle=\tfrac{1}{2}\Big{\{}x^{2}\frac{(x^{2}-3)^{3/2}}{3/2}-\tfrac{2}{3% }\frac{(x^{2}-3)^{5/2}}{5/2}\Big{\}}+C
=13x2(x23)3/2215(x23)5/2+C)\displaystyle=\tfrac{1}{3}x^{2}{(x^{2}-3)^{3/2}}-\tfrac{2}{15}{(x^{2}-3)^{5/2}% }+C\,\,)

(2) Com x=asecθx=a\sec\theta, dxx2a2𝑑x=secθdθ=ln|secθ+tanθ|+C\int\frac{dx}{\sqrt{x^{2}-a^{2}}}\,dx=\int\sec\theta\,d\theta=\ln|\sec\theta+% \tan\theta|+C. Como cosθ=ax\cos\theta=\frac{a}{x},

Logo, dxx2a2𝑑x=ln|xa+x2a2a|+C\int\frac{dx}{\sqrt{x^{2}-a^{2}}}\,dx=\ln|\tfrac{x}{a}+\tfrac{\sqrt{x^{2}-a^{2% }}}{a}|+C. (3) Com x=secθx=\sec\theta, dx=secθtanθdθdx=\sec\theta\tan\theta d\theta:

x3x21𝑑x\displaystyle\int\frac{x^{3}}{\sqrt{x^{2}-1}}dx =sec3θtanθsecθtanθdθ\displaystyle=\int\frac{\sec^{3}\theta}{\tan\theta}\sec\theta\tan\theta d\theta
=sec2θsec2θdθ\displaystyle=\int\sec^{2}\theta\sec^{2}\theta d\theta
=(tan2θ+1)sec2θdθ\displaystyle=\int(\tan^{2}\theta+1)\sec^{2}\theta d\theta
(u:=tanθ)\displaystyle(u{:=}\tan\theta)\quad =(u2+1)𝑑u\displaystyle=\int(u^{2}+1)du
=u33+u+C\displaystyle=\frac{u^{3}}{3}+u+C
=tan3θ3+tanθ+C.\displaystyle=\frac{\tan^{3}\theta}{3}+\tan\theta+C\,.

Mas secθ=x\sec\theta=x implica tanθ=x21\tan\theta=\sqrt{x^{2}-1}. Logo,

x3x21𝑑x=13(x21)32+x21+C.\int\frac{x^{3}}{\sqrt{x^{2}-1}}dx=\frac{1}{3}(x^{2}-1)^{\tfrac{3}{2}}+\sqrt{x% ^{2}-1}+C\,.